The STEYX function returns the standard error of the predicted y-value for each x in the regression. 

Syntax

=STEYX(known_y’s,known_x’s)

Arguments

Argument Description
known_y’s An array or range of dependent data points
known_x’s An array or range of independent data points

Examples

  A B C D
1 Known x Known y    
2 12 15    
3 17 18    
4 14 27    
5 13 16    
6 5 28    
7        
8 Formula Result Notes
9 =STEYX(B2:B6,A2:A6) 6.16057 Standard error of the predicted y-value for each x in the regression

Common Function Error(s)

Problem What went wrong
#N/A Occurs if the array of known_x’s is not the same length as the array of known_y’s
#DIV/0! Occurs if the supplied known_x’s and known_y’s arrays contain fewer than 3 values each

The standard error is a measure of the amount of error in the prediction of y for an individual x.

The equation for the standard error of the predicted y is:    

    \[    \sqrt { \frac 1{(n-2)} \left[{ \sum(y-\bar{y})^2 - \frac {\left[\sum(x-\bar{x})(y-\bar{y})\right]^2 }{\sum(x-\bar{x})^2} } \right] }    \]

where,

  • x is the independent variable
  • y is the dependent variable
  • m is the slope of the line
  • b is a constant which is the value of y when x = 0

The standard error for a line provides a measure of the error in the prediction of y for an individual x.

See Wikipedia for more information on standard error.